Записать матрицу квадратичной формы онлайн. Приведение квадратичной формы к каноническому виду

Рассмотрим наиболее простой и чаще используемый на практике способ приведения квадратичной формы к каноническому виду, называемый методом Лагранжа . Он основан на выделении полного квадрата в квадратичной форме.

Теорема 10.1 (теорема Лагранжа).Любую квадратичную форму (10.1):

при помощи неособенного линейного преобразования (10.4) можно привести к каноническому виду (10.6):

□ Доказательство теоремы проведем конструктивным способом, используя метод Лагранжа выделения полных квадратов. Задача заключается в том, чтобы найти неособенную матрицу такую, чтобы в результате линейного преобразования (10.4) получилась квадратичная форма (10.6) канонического вида. Эта матрица будет получаться постепенно как произведение конечного числа матриц специального типа.

Пункт 1(подготовительный).

1.1. Выделим среди переменных такую, которая входит в квадратичную форму в квадрате и в первой степени одновременно (назовем ее ведущей переменной ). Перейдем к пункту 2.

1.2. Если в квадратичной форме нет ведущих переменных (при всех : ), то выберем пару переменных, произведение которых входит в форму с отличным от нуля коэффициентом и перейдем к пункту 3.

1.3. Если в квадратичной форме отсутствуют произведения разноименных переменных, то данная квадратичная форма уже представлена в каноническом виде (10.6). Доказательство теоремы завершено.

Пункт 2 (выделение полного квадрата).

2.1. По ведущей переменной выделим полный квадрат. Без ограничения общности предположим, что ведущей переменной является переменная . Группируя слагаемые, содержащие , получаем

Выделяя полный квадрат по переменной в , получим

Таким образом, в результате выделения полного квадрата при переменной получим сумму квадрата линейной формы

в которую входит ведущая переменная , и квадратичной формы от переменных , в которую ведущая переменная уже не входит. Сделаем замену переменных (введем новые переменные )

() неособенного линейного преобразования , в результате которого квадратичная форма (10.1) примет следующий вид

С квадратичной формой поступим также, как и в пункте 1.

2.1. Если ведущей переменной является переменная , то можно поступить двумя способами: либо выделять полный квадрат при этой переменной, либо выполнить переименование (перенумерацию ) переменных:

с неособенной матрицей преобразования:

Пункт 3 (создание ведущей переменной). Выбранную пару переменных заменим на сумму и разность двух новых переменных, а остальные старые переменные заменим на соответствующие новые переменные. Если, например, в пункте 1 было выделено слагаемое

то соответствующая замена переменных имеет вид

и в квадратичной форме (10.1) будет получена ведущая переменная.

Например, в случае замены переменных:

матрица этого неособенного линейного преобразования имеет вид

В результате приведенного алгоритма (последовательного применения пунктов 1, 2, 3) квадратичная форма (10.1) будет приведена к каноническому виду (10.6).

Заметим, что в результате производимых преобразований над квадратичной формой (выделение полного квадрата, переименование и создание ведущей переменной) мы использовали элементарные неособенные матрицы трех типов (они являются матрицами перехода от базиса к базису). Искомая матрица неособенного линейного преобразования (10.4), при котором форма (10.1) имеет канонический вид (10.6), получается путем произведения конечного числа элементарных неособенных матриц трех типов. ■

Пример 10.2. Привести квадратичную форму

к каноническому виду методом Лагранжа. Указать соответствующее неособенное линейное преобразование. Выполнить проверку.

Решение. Выберем ведущей переменную (коэффициент ). Группируя слагаемые, содержащие , и выделяя по ней полный квадрат, получим

Сделаем замену переменных (введем новые переменные )

Выразив старые переменные через новые :

Дана квадратичная форма (2) A (x , x ) = , где x = (x 1 , x 2 , …, x n ). Рассмотрим квадратичную форму в пространстве R 3 , то есть x = (x 1 , x 2 , x 3), A (x , x ) =
+
+
+
+
+
+ +
+
+
=
+
+
+ 2
+ 2
+ + 2
(использовали условие симметричности формы, а именно а 12 = а 21 , а 13 = а 31 , а 23 = а 32). Выпишем матрицу квадратичной формы A в базисе e >, A (e ) =
. При изменении базиса матрица квадратичной формы меняется по формуле A (f ) = C tA (e )C , где C – матрица перехода от базиса e > к базису f >, а C t – транспонированная матрица C .

Определение 11.12. Вид квадратичной формы с диагональной матрицей называется каноническим .

Итак, пусть A (f ) =
, тогда A “(x , x ) =
+
+
, где x ” 1 , x ” 2 , x ” 3 – координаты вектора x в новом базисе f >.

Определение 11.13. Пусть в n V выбран такой базис f = f 1 , f 2 , …, f n >, в котором квадратичная форма имеет вид

A (x , x ) =
+
+ … +
, (3)

где y 1 , y 2 , …, y n – координаты вектора x в базисе f >. Выражение (3) называется каноническим видом квадратичной формы. Коэффициенты  1 , λ 2 , …, λ n называются каноническими ; базис, в котором квадратичная форма имеет канонический вид, называется каноническим базисом .

Замечание . Если квадратичная форма A (x , x ) приведена к каноническому виду, то, вообще говоря, не все коэффициенты  i отличны от нуля. Ранг квадратичной формы равен рангу ее матрицы в любом базисе.

Пусть ранг квадратичной формы A (x , x ) равен r , где rn . Матрица квадратичной формы в каноническом виде имеет диагональный вид. A (f ) =
, поскольку ее ранг равен r , то среди коэффициентов  i должно быть r , не равных нулю. Отсюда следует, что число отличных от нуля канонических коэффициентов равно рангу квадратичной формы.

Замечание . Линейным преобразованием координат называется переход от переменных x 1 , x 2 , …, x n к переменным y 1 , y 2 , …, y n , при котором старые переменные выражаются через новые переменные с некоторыми числовыми коэффициентами.

x 1 = α 11 y 1 + α 12 y 2 + … + α 1 n y n ,

x 2 = α 2 1 y 1 + α 2 2 y 2 + … + α 2 n y n ,

x 1 = α n 1 y 1 + α n 2 y 2 + … + α nn y n .

Так как каждому преобразованию базиса отвечает невырожденное линейное преобразование координат, то вопрос о приведении квадратичной формы к каноническому виду можно решать путем выбора соответствующего невырожденного преобразования координат.

Теорема 11.2 (основная теорема о квадратичных формах). Всякая квадратичная форма A (x , x ), заданная в n -мерном векторном пространстве V , с помощью невырожденного линейного преобразования координат может быть приведена к каноническому виду.

Доказательство . (Метод Лагранжа) Идея этого метода состоит в последовательном дополнении квадратного трехчлена по каждой переменной до полного квадрата. Будем считать, что A (x , x ) ≠ 0 и в базисе e = e 1 , e 2 , …, e n > имеет вид (2):

A (x , x ) =
.

Если A (x , x ) = 0, то (a ij ) = 0, то есть форма уже каноническая. Формулу A (x , x ) можно преобразовать так, чтобы коэффициент a 11 ≠ 0. Если a 11 = 0, то коэффициент при квадрате другой переменной отличен от нуля, тогда при помощи перенумерации переменных можно добиться, чтобы a 11 ≠ 0. Перенумерация переменных является невырожденным линейным преобразованием. Если же все коэффициенты при квадратах переменных равны нулю, то нужные преобразования получаются следующим образом. Пусть, например, a 12 ≠ 0 (A (x , x ) ≠ 0, поэтому хотя бы один коэффициент a ij ≠ 0). Рассмотрим преобразование

x 1 = y 1 – y 2 ,

x 2 = y 1 + y 2 ,

x i = y i , при i = 3, 4, …, n .

Это преобразование невырожденное, так как определитель его матрицы отличен от нуля
= = 2 ≠ 0.

Тогда 2a 12 x 1 x 2 = 2 a 12 (y 1 – y 2)(y 1 + y 2) = 2
– 2
, то есть в форме A (x , x ) появятся квадраты сразу двух переменных.

A (x , x ) =
+ 2
+ 2
+
. (4)

Преобразуем выделенную сумму к виду:

A (x , x ) = a 11
, (5)

при этом коэффициенты a ij меняются на . Рассмотрим невырожденное преобразование

y 1 = x 1 + + … + ,

y 2 = x 2 ,

y n = x n .

A (x , x ) =
. (6).

Если квадратичная форма
= 0, то вопрос о приведении A (x , x ) к каноническому виду решен.

Если эта форма не равна нулю, то повторяем рассуждения, рассматривая преобразования координат y 2 , …, y n и не меняя при этом координату y 1 . Очевидно, что эти преобразования будут невырожденными. За конечное число шагов квадратичная форма A (x , x ) будет приведена к каноническому виду (3).

Замечание 1. Нужное преобразование исходных координат x 1 , x 2 , …, x n можно получить путем перемножения найденных в процессе рассуждений невырожденных преобразований: [x ] = A [y ], [y ] = B [z ], [z ] = C [t ], тогда [x ] = AB [z ] = ABC [t ], то есть [x ] = M [t ], где M = ABC .

Замечание 2. Пусть A (x , x ) = A (x , x ) =
+
+ …+
, где  i ≠ 0, i = 1, 2, …, r , причем  1 > 0, λ 2 > 0, …, λ q > 0, λ q +1 2b ), то главная ось, проходящая через фокусы, называется большой осью эллипса, а вторая главная ось – малой осью.

2) Весь эллипс содержится внутри прямоугольника

3) Эксцентриситет эллипса e a , а весь эллипс лежит в прямоугольнике )

5) Отношение расстояния r i от точки эллипса до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету эллипса.

Расстояния от точки М(х, у) до фокусов эллипса можно представить так:

Составим уравнения директрис:

(D 1), (D 2). Тогда Отсюда r i / d i = e , что и требовалось доказать.

Определение 11.5. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 иF 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 – r 2 | = 2a , откуда Если обозначить b ² = c ² – a ², отсюда можно получить

каноническое уравнение гиперболы . (11.3)

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Доказательство можно провести так же, как и для эллипса.

Определение 11.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой .

У Для вывода уравнения параболы выберем декартову

систему координат так, чтобы ее началом была середина

D M(x,y) перпендикуляра FD , опущенного из фокуса на директри-

r су, а координатные оси располагались параллельно и

перпендикулярно директрисе. Пусть длина отрезка FD

D O F x равна р . Тогда из равенства r = d следует, что

Алгебраическими преобразованиями это уравнение можно привести к виду: y ² = 2px , (11.4)

называемому каноническим уравнением параболы . Величина р называется параметром параболы.

1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.

2) Вся парабола расположена в правой полуплоскости плоскости Оху.

Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:

Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e 1) или параболу (при е =1).

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: